1:2 # RESEARCH MEMORANDUM TESTS OF AERODYNAMICALLY HEATED MULTIWEB WING STRUCTURES IN A FREE JET AT MACH NUMBER 2 FOUR ALUMINUM-ALLOY MODELS OF 20-INCH CHORD AND SPAN WITH 0.064-INCH-THICK SKIN, 0.025-INCH-THICK RIBS AND WEBS, AND ZERO, ONE, TWO, OR THREE CHORDWISE RIBS By John R. Davidson, Richard Rosecrans, and Louis F. Vosteen Langley Aeronautical Laboratory Langley Field, Va. Lebrany C MAY 8 1958 LANGLEY AERONAUTICAL LABORATORY LIBRARY, NACA LANGLEY FILLD, VIRGINIA CLASSIFIED DOCUMENT This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON May 8, 1958 CONFIDENTIAL NACA RM L57L13 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM TESTS OF AERODYNAMICALLY HEATED MULTIWEB WING STRUCTURES IN A FREE JET AT MACH NUMBER 2 FOUR ALUMINUM-ALLOY MODELS OF 20-INCH CHORD AND SPAN WITH 0.064-INCH-THICK SKIN, 0.025-INCH-THICK RIBS AND WEBS, AND ZERO, ONE, TWO, OR THREE CHORDWISE RIBS By John R. Davidson, Richard Rosecrans, and Louis F. Vosteen #### SUMMARY Four multiweb wing models were tested at a Mach number of 2 in a free jet to investigate structural effects of aerodynamic heating and loading. The models had a 20-inch chord and span; a 5-percent-thick, circular-arc airfoil section; and three, two, one, or zero chordwise internal stiffening ribs. Each aluminum-alloy model had 0.064-inchthick skins, six 0.025-inch-thick spanwise webs, and 0.025-inch-thick tip bulkheads. The model with no internal ribs survived the first test at sea-level static pressure and a stagnation temperature of 930 F, but failed during the second test at a stagnation temperature of 5630 F. The other models survived all tests. Temperature and strain measurements were made on all models and the data were tabulated. Calculated stresses, determined from the temperature distribution on the model with one rib, are compared with the stresses determined from measured strains. The tests showed that the addition of a single rib maintained sufficient structural integrity to prevent flutter after loss of stiffness caused by thermal stress and reduced modulus of elasticity at elevated temperatures. Modes determined from laboratory vibration tests without heating show that the addition of only one rib nearly doubles the lowest frequency at which cross-sectional distortion occurs. #### TNTRODUCTTON This is part of a series of reports describing tests conducted by the Langley Structures Research Division to investigate the effects of combined aerodynamic heating and loading on built-up wing structures. Aerodynamic heating can reduce structural stiffness by lowering material moduli and inducing thermal stresses. Previous papers (refs. 1 to 4) describe the tests on the first seven models in this series. The first model (model MW-1) was of 40-inch chord and semispan and failed during a test in which the structure was subjected to aerodynamic heating. second model (model MW-2) was essentially a half-scale version of model MW-l and had a 20-inch chord and semispan; this model also failed under similar test conditions. Both models were tested at a Mach number of 2 and a stagnation temperature near 500° F, and both developed flutter involving cross-sectional distortion which ended with the destruction of the models. Additional tests were made on models of the MW-2 design to obtain pressure data and to investigate the effect of angle of attack on the flutter mode. (See ref. 5.) Model MW-4 differed from model MW-2 only in the thickness of the tip bulkhead (0.025 inch thick for model MW-4 and 0.250 inch thick for model MW-2); model MW-4 failed in a manner similar to that of models MW-1 and MW-2. The remaining models (MW-3, MW-5, MW-6, and MW-7) survived similar tests. The flutter and failure of models MW-2 and MW-4 indicated the need for additional initial stiffness to maintain sufficient structural resistance to flutter after aerodynamic heating had lowered the material moduli and thermal stresses had changed the stiffness of the built-up wing structure. (See refs. 6 and 7.) Consequently, the design of model MW-4 was modified by the addition of one, two, and three chordwise ribs in models designated MW-18, MW-17, and MW-16, respectively. In addition, another model identical to model MW-4, and designated MW-4-(2), was included in the test program covered in this report. These models were tested to measure model temperature and strain distributions, to confirm the previous conclusion that aerodynamic heating contributed to the failure of model MW-4, and to evaluate the effectiveness of chordwise ribs in preventing distortion of the cross section. The effects of chordwise ribs are discussed, and an attempt is made to correlate measured stresses with calculated stresses. #### SYMBOLS R radius, in. T temperature, OF T* normalized temperature, $${}^{\circ}F$$; T_b * = $\frac{(T_t - T_o)_a}{(T_t - T_o)_b}(T - T_o)_b + T_o, a$ T_t stagnation temperature, ^OF T_{O} initial temperature (model), ${}^{O}F$ α angle of attack, deg # Subscripts: a test conditions experienced by model MW-18 during its first test b test conditions or model temperatures under consideration Stress, expressed in psi or ksi, is positive for tension and is negative for compression. #### MODELS #### Model Construction Each semispan wing model had a 5-percent-thick, symmetrical, circular-arc airfoil section and was constructed from 2024-T3 aluminum alloy with a 20-inch chord and $2\frac{1}{8}$ - inch span of which $19\frac{7}{8}$ inches extended into the airstream. Internal construction consisted of six 0.025-inch-thick spanwise webs spaced $2\frac{1}{2}$ inches apart and three, two, one, or zero 0.025-inch-thick chordwise stiffening ribs with the number depending upon the particular model. All models had a 0.025-inch-thick tip bulkhead, 0.064-inch-thick skin, and solid leading and trailing edges. At the base of each model there were two 0.081-inch-thick doubler plates, a $2\frac{1}{2}$ -inch-thick root bulkhead, and two 1/2-inch-thick-steel clamping blocks for attaching the model to its supporting structure. Aluminum-alloy standard and blind rivets were used throughout. Sketches of each model showing individual construction details are found in figure 1. A photograph of the interior The model exteriors were painted with zinc chromate primer, upon which a black India ink grid was superimposed to help determine model of model MW-16 prior to final assembly is shown in figure 2. motions and deformations from motion-picture data. The effect of this paint on the heat transfer into the structure is small. (See ref. 4.) #### Instrumentation All models were instrumented with iron-constantan thermocouples with the beaded junctions peened into small holes drilled into the skins, webs, and ribs. Thermocouples mounted in the interior of the solid leading- or trailing-edge sections were first coated with cement and were then inserted into small holes drilled into these sections. Figure 3 shows the thermocouple locations for each model. Figure 3 shows the locations where SR-4 type EBDF-7D temperature-compensated wire strain gages were attached to the models with thermosetting cement. These strain gages are compensated to read approximately zero strain when used on unstressed aluminum alloy at temperatures between 50° F and 250° F. The useful temperature range may be extended by first post-curing the gage cement to the maximum test temperature and then, after cooling to room temperature, calibrating the gage by slowly heating the model in an oven while measuring the indicated strain when load and thermal stresses are absent. The maximum model temperature expected during these tests was 450° F; inasmuch as heating the model to this temperature would change the aluminum-alloy properties, the gage cement was postcured to only 250° F and, therefore, gage accuracy was sacrificed to prevent changes in the material properties. The natural frequency of the galvanometers used to record strain data was about 100 cps; thus, these galvanometers were not suitable for measurement of high-frequency strain amplitudes. The following list gives the estimated probable errors in individual measurements and the corresponding time constants. The time constant, which is considered independent of the probable error, is defined as the time at which the recorded value of a step-function input is 63 percent of that of the input; after three time constants, the response amounts to at least 95 percent of the input. | Item | Probable error | Time constant, sec | |------------------------|-----------------------|--------------------| | Stagnation pressure | ±0.7 psi | 0.03 | | Stagnation temperature | ±3° F | .12 | | Model temperature | ±3° F | . 03 | | Model strain | 1150 microinches/inch | .02 | Errors due to thermocouple installation have not been included but are believed to be small. High-speed 16-millimeter motion pictures were taken of each test to record model behavior. The high-speed cameras had a frame rate of 600 to 1,600 frames per second. Monitor cameras running at 120 frames per second were used to augment the data supplied by the high-speed cameras. The cameras and oscillograms were correlated by using a common 1/10-second timing pulse. #### APPARATUS AND PROCEDURE ## Aerodynamic Test Facility The tests were made in the preflight jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. The preflight jet is a blowdown-type wind tunnel in which models are tested in a 27- by 27-inch free jet at the exit of a Mach number 1.99 supersonic nozzle. A description of the jet operation and characteristics may be found in reference 2. Disturbances within the jet during the starting and shutdown periods cause violent model
oscillations, and for some of these tests a retractable tip stabilizer was used to restrain the model until test conditions were reached. The stabilizer was activated at about 1 second after the start of the air flow, it released the model at 1.3 seconds, and it left the air-stream at about 1.7 seconds. Immediately preceding the shutdown period, at about 11 seconds, the stabilizer reentered the airstream and had fully gripped the model at about 12 seconds. ## Laboratory Vibration Tests Prior to the wind-tunnel tests, a vibration survey was made to find the natural modes and frequencies of each of the models. An electromagnetic shaker supplied energy to the model, and the response was detected by a phonograph-type pickup whose signal was fed into a cathode-ray oscilloscope. The frequencies were measured by a Stroboconn frequency meter. #### Jet Tests Figure 4 is a photograph of a typical model mounted on the jet test stand preparatory to an aerodynamic test. An aerodynamic fence surrounded the model base and protected the model instrumentation leads. The sharp leading edge of the fence was raised 1/8 inch above the bottom wall of the jet nozzle to scoop off a small boundary of air. The leading edge of the model was located 2 inches from the nozzle-exit plane; this separation may have diminished as much as 1/4 inch during a high-stagnation-temperature test because the nozzle expanded toward the model. All tests were conducted with the model oriented at zero angle of attack with respect to the jet center line. Model MW-4-(2) was first tested at a stagnation temperature near ambient temperature (93° F) and then at a high stagnation temperature (563° F). Model MW-16 was first tested with the stagnation temperature near ambient temperature; the next three tests were made at elevated stagnation temperatures. The other two models were tested at the elevated temperatures only. #### RESULTS AND DISCUSSION # Laboratory Vibration Tests Vibration modes and frequencies for the models are indicated in The node-line locations for individual model modes varied only slightly from the average locations sketched in this table. of ribs changed mode C from one involving much chordwise distortion into a clear second bending mode, D. For model MW-4-(2), the lowest frequency at which chordwise distortion occurred was 268 cps. The addition of one rib to this design (to give model MW-18) increased the chordwise stiffness sufficiently to eliminate chordwise deflection below 465 cps, as is evident from the mode-pattern change between modes C and D. In all cases, whenever a single rib was added to the basic configuration the model frequency was raised; adding a second rib increased all frequencies again; but the addition of a third rib was accompanied by a decrease in the frequencies for modes A, B, and D, which may indicate that the added mass had more influence than the incremental change in stiffness. The MW-16 design (three ribs) was the only configuration that exhibited a distinct second torsion mode; the other designs seem to have had insufficient ribs to develop this form of vibration. It appears from these room-temperature tests that two chordwise ribs may represent optimum stiffening for a wing of this design. # Jet Tests Test conditions. - A summary of the averaged test conditions is given in table II, and typical variations of stagnation pressure and temperature with time are plotted in figures 5 and 6, respectively. Test conditions were deemed to exist whenever the stagnation pressure exceeded 100 psia, which was the period from approximately 2 to 11 seconds after air began to flow into the jet. Averaged test conditions were determined from the area under the quantity plotted against time curves for the 9 seconds during which test conditions existed. Model data. Data from the model instrumentation are presented primarily in tabular form, with values given at the even seconds during a test. All data herein are referenced to zero test time which was taken to occur when the static pressure in the jet nozzle l inch from the nozzle exit first deviated from ambient pressure. This occurrence is approximately 1.8 seconds before test conditions are reached. The severe characteristic starting and shutdown disturbances of the jet destroyed some model instrumentation and caused other instruments to be unreliable. There were other instrumentation failures which probably were initiated by the starting shock but in which the instrument finally failed from a combination of heat and random disturbances. A gap was left in the data in the tables whenever an instrument failed or became unreliable. The temperature data are presented in table III, and the strain data are presented in table IV. The tabulated strain values are the measurements read directly from the records with no corrections for errors caused by model-temperature changes. #### Model Behavior The behavior of the models during each test is summarized in table V and is described in detail in the following discussion. In addition, a motion-picture film supplement has been prepared of the two tests on model MW-4-(2) and of the second test on model MW-18 and is available on loan. A request-card form will be found at the back of this paper on the page immediately preceding the abstract and index pages. No attempt was made to evaluate the amplitude of the oscillations from the strain-gage records at any time because the inherent instrumentation attenuation would create large inaccuracies in such an analysis. The exact beginning and ending of most of the recorded and observed oscillations were usually difficult to determine; hence, the times listed in the descriptions of the tests are given only to a valid number of significant figures for each respective measurement. Test 1 of model MW-4-(2).- During test 1, strain gages 10 and 11 showed that model MW-4-(2) vibrated at 65 cps between 1.5 seconds and 1.8 seconds with a very small amplitude; this was after the jet starting disturbances had ceased. This slight movement was not discernible in the high-speed motion pictures. At 8.7 seconds small-amplitude oscillations commenced; strain gage 1 indicated a vibratory frequency of 130 cps. The motion pictures show that the small amplitude increased monotonically Test 2 of model MW-4-(2).- After 1.0 second, the end of the starting disturbances of test 2 of model MW-4-(2), the motion pictures showed that a small vibrational mode at 72 cps was present, but it quickly disappeared in the pictures. However, strain gage 11 showed that a 72-cps vibration was present until failure. In the motion pictures the model remained stationary until 7.32 seconds, at which time a 238-cps flutter mode began; this mode ended with violent and complete destruction of the model. The wing apparently first vibrated with skin panel flutter, but the amplitudes were so small that exact modal identification was made difficult. By 7.42 seconds a mode involving chordwise distortion was identified. This motion became increasingly violent, and at 7.64 seconds the tip rib showed evidence of crippling failure at the right side of the model at web 4. (Webs were numbered from the leading edge to the trailing edge.) At the maximum displacement of this same point from the model neutral center line at 7.656 seconds, the rear portion of the tip rib was torn from the model. The next sign of progressive failure occurred at 7.672 seconds when a tear started at the leading edge near the base of the model. The tear reached the trailing edge at 7.677 seconds, and the remains of the model were carried downstream. Photographs of this failure sequence are shown in figure 7. Test 1 of model MW-16. During the period throughout which test conditions existed, no motion of model MW-16 during test 1 was visible in the motion pictures. Some intermittent small-amplitude oscillations, probably excited by random jet noise, were indicated by the strain-gage records. These frequencies were between 60 and 78 cps. Test 2 of model MW-16. The strain-gage record of model MW-16 during test 2 showed some very small amplitude, random oscillations of intermittent duration at 275 to 286 cps from after the starting disturbances until the beginning of the shutdown period. At 10 seconds strain gage 9 showed a vibration of increasing amplitude with a frequency of 60 cps which may have actually started before 10 seconds, but the vibration was not large enough to cause a noticeable strain-gage signal. At 12 seconds this motion showed clearly in the motion pictures but died out after 13 seconds. At 13.3 seconds the shutdown disturbances began. Test 4 of model MW-16.- After the starting period of test 4, model MW-16 remained stable until 9 seconds when strain gage 9 indicated a small vibration at 60 cps which lasted until the shutdown disturbances began. For this test only one camera, operating at about 100 frames per second, was used; this motion could not be seen in these pictures. Test 1 of model MW-17.- The strain-gage records of test 1 of model MW-17 indicate that some form of disturbance (probably random jet noise in the test house) caused the model to vibrate slightly at frequencies between 130 and 140 cps. After the tip stabilizer reentered the airstream preceding the shutdown period, the model developed a small torsional mode that was visible in the motion pictures. All strain gages indicated a frequency of 140 cps. The motion pictures indicated that the vibrations were intermittent from 10.9 seconds until the shutdown period. Test 2 of model MW-17.- After the starting period of test 2 of model MW-17, there was no motion until 11 seconds when the tip stabilizer reentered the airstream. Then, a torsional mode developed at 140 cps and continued until the beginning of the shutdown disturbances. Test 1 of model MW-18.- Model MW-18 remained stationary after the starting period of test 1. At 11 seconds when the tip stabilizer reentered the airstream, a torsional and bending
mode of vibration commenced at a frequency of 145 cps which remained until the beginning of the shutdown period. Test 2 of model MW-18. Strain gages 11, 12, and 20 indicated some small vibration of model MW-18 during test 2 at a frequency of 70 cps between 5 seconds and the shutdown period. This vibration was not observed in the motion pictures. After the tip stabilizer had fully regripped the model, the pictures showed intermittent torsional vibration modes of first 124 cps and then, immediately preceding the shutdown disturbances, 70 cps; the 70-cps vibration was barely evidenced by strain gages 2 and 4. However, for the period between 11.6 seconds and 12.6 seconds, several frequencies could be obtained from the strain-gage traces; for instance, strain gage 13 showed a 275-cps frequency, strain gage 6 showed a 400-cps frequency, and strain gage 10 showed a 538-cps frequency. The small amplitudes and diversity of frequency suggest random excitation. For times other than those during the starting, shutdown, and failure periods, all the noted vibrations were of small amplitude, probably resulting from the random noise and pressure disturbances in the vicinity of the jet. Whenever the jet stagnation pressure was below 50 psi, which was from the start until about 1.2 seconds and also from about 13.4 seconds until complete shutdown of the jet, the model experienced violent buffeting; when the stagnation pressure was between 50 and 100 psi, the jet shock was passing over the model and creating random but much less violent disturbances. The presence of the tip stabilizer in the airstream prior to the shutdown period evidently disturbed the flow in a manner which excited the observed model torsional vibrations. # Temperatures A typical temperature history of a skin and web is shown in figure 8 for a high-stagnation-temperature test. The temperature data from test to test were compared by normalizing the data with respect to the test conditions experienced by model MW-18 during test 1. The normalized temperature was determined from the formula $$T_b^* = \frac{(T_t - T_o)_a}{(T_t - T_o)_b} (T - T_o)_b + T_o, a$$ where the subscript a refers to the test conditions which existed during the first test of model MW-18, and the subscript b refers to the test conditions or model temperatures for the particular model under considera-The normalized temperatures plotted in figures 9 and 10 show that the agreement among the model-temperature data was very good. Figure 9 is a plot of the skin temperatures (midway between webs where the sink effect of the web is negligible) that existed at 6 seconds test time. In general, the skin temperatures decreased spanwise from the tip to the root and chordwise from the leading edge to the trailing edge. A temperature distribution was calculated by the method outlined in reference 4 using the Van Dreist method for calculating the heat-transfer coefficient; tunnelsurvey data were used to determine the adiabatic-wall temperature. It can be seen from figures 9(b), 9(c), and 9(d) that the spanwise distribution indicated in figure 9(a) is typical of each chord station. The spanwise temperature variation is attributed to the parabolic-like stagnationtemperature distribution that is a characteristic of the jet. lated line shown with the test data in figure 9(a) actually follows the measured variation in the jet stagnation temperature. Figure 10 shows the difference in the normalized temperatures between the skin thermocouples and the web thermocouples for webs 3 and 4 at specific span stations. This difference generally increases spanwise because of the more rapid heating of the model at stations near the center of the jet stream. However, significant deviations from this general distribution may be taken as a rough indication of the local joint conductivity. Figure 10 shows that, near the tip of model MW-18, the joint conductivity was considerably below average for web 3, but was above average for web 4. #### Stresses Experimental stresses. Inasmuch as the state of stress in the model skins was two-dimensional, stresses were determined from measured strains only at points where two perpendicular gages were mounted. In order to obtain the stresses at a given point, the chordwise and spanwise gages were considered as being superimposed upon each other at the location of the thermocouple placed between them. (See fig. 3(d).) Several methods were tried in an attempt to account for temperature effects on the strain data obtained from the strain gages. Although no one method could be shown to lead to reliable and accurate strain data, especially in the temperature range above 250° F, inspection of the results indicated that the strain error could be as much as ±200 microinches per inch. This would cause a skin-stress error of about ±2,000 to 3,000 psi, which is of the same order of magnitude as the experimental stresses. A survey of the strain data was made by using the measured values of strain at 6 seconds test time. These data indicate that at the model root the experimental chordwise strains were as much as twice the spanwise strains. The gages mounted on opposite skins in the center bay near the root indicate bending strains - counterclockwise strains (looking upstream) for models MW-17 and MW-18 and clockwise strains for model MW-4-(2); only one skin was instrumented at this point on model MW-16. The strain gages indicated tensile stresses in the ribs and webs (except in the tip rib in model MW-18 during the first test) for all the elevated-temperature tests. During the cold-temperature test on model MW-16, the rib strains were compressive; the conditions during this test were such that the model was cooled. Compared with the web strains, the rib strains were small, with a maximum rib strain (at 6 seconds) of 208 microinches per inch of tension on the middle rib of model MW-18 during the first test. This condition suggests that these ribs did not restrain the model skins as much in the chordwise direction as the webs did in the spanwise direction; this may be primarily due to the discontinuous nature of the ribs. The webs ran continuously over the span. The strains measured on web 3 during the elevated-temperature tests on models MW-16, MW-17, and MW-18 were in the same range (822 to 953 microinches per inch of tension) at 6 seconds test time; whereas for the elevated-temperature test on model MW-4-(2), the strain at this point was 1,280 microinches per inch of tension. At the time considered (6 seconds test time) the model skin temperatures were such that, because of imperfect strain-gage temperature compensation, the range of error in the indicated strains could be as much as \$\frac{1}{2}\$100 microinches per inch. Calculated stresses.— The nonuniform temperature distribution over the models during high-stagnation-temperature tests gave rise to thermal stresses. Appendix E in reference 8 presents an approximate method for calculating these thermal stresses. This method, which does not take into account any influence on spanwise stresses caused by chordwise stresses, was used to calculate spanwise stresses at a cross section 3 inches from the tip of model MW-18, a section not influenced appreciably by chordwise ribs. At this section the general spanwise gradient was very small and was neglected. The experimental model temperatures (from test 1 of model MW-18) were used to determine the temperatures of the area elements shown in the idealized cross section in figure 11. Aerodynamic loads were neglected because it was assumed that, at zero angle of attack, only the drag force would appreciably add to the thermal stresses; preliminary calculations indicated that stresses due to drag load were less than 5 psi. End effects were also considered negligible at this section. Figure 12 shows calculated skin stresses at the midchord and web stresses at the web center for the two webs immediately adjacent to the midchord (webs 3 and 4). The largest peak web stress (\approx 14,000 psi) was found to exist in web 3 and was a direct result of the low temperature measured at this point. This stress is 75 percent higher than the stress in web 4 and shows that for these test conditions the joint conductivity can have an important effect on the stresses. (See ref. 9.) Peak stresses for the other webs at the same spanwise station were between 8,000 and 10,000 psi with the 8,000-psi stress occurring in web 4. A somewhat above average value of joint conductivity is indicated in figure 10(b). The skin stress histories at the bay centers were all similar, with peak stresses of about -3,000 psi. The maximum leading-edge stress, which occurred at 6 seconds test time, was calculated to be 740 psi; the maximum trailing-edge stress of 1,750 psi occurred at 9 seconds. Comparison of calculated and experimental stresses.— Several significant facts are apparent from a comparison of the calculated stresses with the experimental-stress values obtained from the strain data for model MW-18. Both the experimental and calculated spanwise skin stresses have a magnitude of about -3,000 psi at the section 3 inches from the model tip. The strain gages also show that the chordwise stresses at this section were about 2,000 psi. This value of chordwise strain, considered with the low values of rib stress and small rib area (when compared with the skin area on a spanwise section), indicates that some form of chordwise restraint, other than the ribs, was present. Such a restraint exists in a flat plate which is clamped at one edge and is subjected to a uniform temperature rise. (See ref. 10.) Calculations using the methods outlined in this reference indicate that the root restraint will induce chordwise stresses in the same range as those measured at a distance 3 inches from the tip of model MW-18. The singularly high calculated peak stress in web 3 in model MW-18 is a direct consequence of the relatively low temperature measured at this
location and probably results from a low, local joint conductivity which retarded the heat flow into the web. The joint conductivity may be expected to vary from one location to another, inasmuch as it is a function of such things as tightness of joint and contact-surface condition of materials (things which are difficult to evaluate on other than a statistical basis). The low values of strain (when considered with the ratio of rib area to skin area) measured in the ribs show that the assumption that chordwise rib restraint could be neglected in the spanwise stress calculations was valid for these model tests. Inasmuch as the strain gages on the chordwise ribs in models MW-16, MW-17, and MW-18 indicated that these members contributed little thermal-stress restraint to the models, the stress calculations at the section 3 inches from the tip on model MW-18 should also apply to all the other models in this group provided the stresses are normalized with respect to the individual test conditions (with respect to the difference between the test stagnation temperature and the initial temperature of the model). #### Discussion of Failure The first test of model MW-4-(2), which occurred under conditions where aerodynamic heating was not present, showed that, although this design may be near-marginal, the model was strong enough to withstand the aerodynamic forces at a Mach number of 2 and sea-level static pressure and was stiff enough to resist flutter under these test conditions. second test, made at a stagnation temperature of 5630 F, added thermal stresses due to aerodynamic heating to the stresses caused by aerodynamic loading and reduced the modulus of elasticity of the aluminum alloy. the thermal stress and the reduced modulus contributed to the decrease of the effective stiffness of the model; a chordwise flutter mode developed, and the model completely destroyed 0.36 second after the flutter mode began. The first model (model MW-4) of this design had been previously tested and had failed at 5.60 seconds after the start of the test (ref. 4): whereas model MW-4-(2) failed at 7.68 seconds after the start of the test. Other than the small difference in the time of failure, the two models failed in a very similar manner: both failed 0.36 second after the beginning of the flutter mode; the flutter frequency of model MW-4 was 240 cps and that of model MW-4-(2) was 238 cps; and both models failed when the large distortions of the cross section crushed the tip rib. A comparison of the test conditions of the two models shows that the thermal stresses in model MW-4 should be about 10 percent lower than those in model MW-4-(2) (see appendix of ref. 3); however, a comparison of the normalized temperature distributions between the two models leads to discrepancies which indicate that the methods used to determine aerodynamic test conditions did not give compatible values between the two sets of tests. In reference 4 two probes mounted on posts behind the model were used to measure the stagnation temperatures; whereas for the tests reported herein, probes mounted in the screen section just downstream from the jet settling chamber were used either exclusively or were averaged with the probes mounted behind the model. As a check, the experimental adiabatic-wall temperature was calculated for model MW-18 in run 1 by using the model temperature data (see ref. 4), and the stagnation temperature was then calculated by using a recovery factor of 0.88. The resulting stagnation temperature, as experienced by the model, was 480° F, which was considerably lower than the stagnation temperature of 5230 F indicated by the tunnel data. The results, if the data agreement in figure 9 is used as justification, may be extrapolated to the elevatedtemperature test on MW-4-(2). The temperature comparison indicates that, if the stagnation temperature in the test on MW-4-(2) had been lower, better agreement would be found among the test data between the MW-4 design models; this would also have the effect of lowering the stress level in model MW-4-(2) to that in model MW-4. Thus, the small discrepancy in time of failure between the two models can be partly attributed to experimental error in determining the test conditions. A difference in joint conductivity between the two models also might have influenced the time of failure, but no reliable comparison between the models could be made since the only skin-and-web thermocouple combination available in model MW-4-(2) was near the root, a position where the parabolic-like stagnation-temperature profile across the jet stream would cause the temperature difference between these somewhat offset (spanwise) thermocouples to be questionable. (See fig. 3(a).) Studies of a cross section of the MW-4 design show that the mode of cross-sectional distortion observed during the flutter of models MW-4 and MW-4-(2) may be induced by applying shearing loads to the skins in such a manner that the opposite skins tend to slide with respect to each other. (The same effect may be obtained by applying equal moments and equal and opposite forces at the leading and trailing edges, respectively.) If the riveted joints between the webs and the skins are replaced by pinned connections, the cross section in figure 1(a) becomes a series of four-bar linkages and will have no resistance to distortion; also, if the aforementioned loading is applied, the cross section will distort into a shape approximating the distortion of the cross section during flutter. This shape is a direct result of the fact that the opposite skins are not parallel to each other (except at the center chord) but instead slope together. In the actual model, however, the skin is continuous and must bend when the cross section distorts; for ribless models, then, the skin bending stiffness is a criterion in determining the flutter resistance. The major effect of the chordwise ribs in models MW-16, MW-17, and MW-18 was not to increase the skin bending stiffness but to restrain the chordwise distortion by preventing the skins from sliding past each other at points other than those at the leading and trailing edges. It may be possible to add sufficient restraint (for these test conditions) by using only a partial chordwise rib extending over one or two cells; if one or two cells are restrained, the effective stiffness of the entire cross section against this type of distortion is increased. #### SUMMARY OF RESULTS Four multiweb wing models of 20-inch chord and span with 0.064-inch-thick skin, 0.025-inch-thick ribs and webs, and zero, one, two, or three chordwise ribs were tested. The following results are given: - 1. The model without chordwise ribs survived the first test where aerodynamic-heating effects were absent, but it failed during the second test when heating effects were included; thus, the present test confirmed the conclusions formed after an earlier test on another model of the same design (see NACA Research Memorandum L57HO1) that aerodynamic heating made the model susceptible to flutter. - 2. The mode of flutter failure involved distortion of the entire cross section of the model, a condition which required that the individual cells of the model cross section distort and the opposite skins slide with respect to each other. Chordwise ribs helped to restrain this sliding tendency. One chordwise rib was sufficient to prevent flutter of this model design under these test conditions. The addition of one chordwise rib nearly doubled the lowest natural frequency at which chordwise deformation occurred. - 3. The temperature data compared very well from model to model on a normalized basis. - 4. The experimentally measured stresses were well below yield stresses for the aluminum alloy used in the model construction. The largest stresses were in the spanwise webs. Chordwise skin stresses near the model roots were larger than those elsewhere in the skin because of the large restraint at this location. Direct rib stresses were small. The error in the measured strains is estimated to be about the same as the skin strains caused by thermal stresses. 5. The thermal stresses calculated for one model were in agreement with the measured stresses within the accuracy of the test data. The low strains measured in the chordwise ribs indicate that these calculations which neglect the restraint of ribs may be extrapolated to the other models with more or fewer ribs. Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., November 27, 1957. #### REFERENCES - 1. Heldenfels, Richard R., Rosecrans, Richard, and Griffith, George E.: Test of an Aerodynamically Heated Multiweb Wing Structure (MW-1) in a Free Jet at Mach Number 2. NACA RM 153E27, 1953. - 2. Griffith, George E., Miltonberger, Georgene H., and Rosecrans, Richard: Tests of Aerodynamically Heated Multiweb Wing Structures in a Free Jet at Mach Number 2 Two Aluminum-Alloy Models of 20-Inch Chord With 0.064- and 0.081-Inch-Thick Skin. NACA RM L55F13, 1955. - 3. Heldenfels Richard R., and Rosecrans, Richard: Preliminary Results of Supersonic-Jet Tests of Simplified Wing Structures. NACA RM L53E26a, 1953. - 4. Rosecrans, Richard, Vosteen, Louis F., and Batdorf, William J., Jr.: Tests of Aerodynamically Heated Multiweb Wing Structures in a Free Jet at Mach Number 2 Three Aluminum-Alloy Models and One Steel Model of 20-Inch Chord and Span With Various Internal Structures and Skin Thicknesses. NACA RM L57HOl, 1957. - 5. Miltonberger, Georgene H., Griffith, George E., and Davidson, John R.: Tests of Aerodynamically Heated Multiweb Wing Structures in a Free Jet at Mach Number 2 Two Aluminum-Alloy Models of 20-Inch Chord With 0.064-Inch-Thick Skin at Angles of Attack of 0° and ±2°. NACA RM L57H19, 1957. - 6. Vosteen, Louis F., and Fuller, Kenneth E.: Behavior of a Cantilever Plate Under Rapid-Heating Conditions. NACA RM L55E2Oc, 1955. - 7. Vosteen, Louis F., McWithey, Robert R., and
Thompson, Robert G.: Effect of Transient Heating on Vibration Frequencies of Some Simple Wing Structures. NACA TN 4054, 1957. - 8. Heldenfels, Richard R.: The Effect of Nonuniform Temperature Distributions on the Stresses and Distortions of Stiffened-Shell Structures. NACA TN 2240, 1950. - 9. Griffith, George E., and Miltonberger, Georgene H.: Some Effects of Joint Conductivity on the Temperatures and Thermal Stresses in Aerodynamically Heated Skin-Stiffener Combinations. NACA TN 3699, 1956. - 10. Aleck, B. J.: Thermal Stresses in a Rectangular Plate Clamped Along an Edge. Jour. Appl. Mech., vol. 16, no. 2, June 1949, pp. 118-122. NACA RM L57L13 TABLE I.- NATURAL VIBRATION MODES AND FREQUENCIES FOR MODELS | | | | | Fı | equency, | eps, for n | ode line ⁸ | _ | | | | |----------|-------|-----|-----|-----|----------|------------|-----------------------|-----|-----|-----|-----| | | A | В | С | D | E | F | G | . н | I | J | К | | Model | ,,,,, | | | | | | | | | | | | MW-4-(2) | 72 | 144 | 268 | | 392 | | 427 | | 529 | | | | MW-18 | 73 | 156 | | 326 | | 465 | | | | | 585 | | MW-17 | 75 | 160 | | 335 | | 533 | | | | 746 | 661 | | MW-16 | 70 | 147 | | 318 | | 554 | | 439 | | 747 | 677 | ^aModes shown are composites from modes for all models. Individual modes varied slightly from those shown. Sketches show node lines obtained during room-temperature vibration tests. TABLE II. - AERODYNAMIC-TEST-DATA SUMMARY CIVING AVERAGED TEST CONDITIONS | Model | Test | Stagnation
pressure,
psia | Stagnation
temperature,
o _F | Free-stream
static
pressure,
psia | Free-stream
dynamic
pressure,
psi | Free-stream
temperature, | Free-stream
velocity,
fps | Free-stream density, slugs/cu ft | Speed of sound, fps | Reynolds
number
per foot | |----------|------------------|---------------------------------|--|--|--|-----------------------------|----------------------------------|----------------------------------|--------------------------------|--------------------------------| | MW-4-(2) | 1
2 | 110
116 | 93
563 | 14.3
15.1 | 39.8
41.7 | - 152 | 1,713
2,330 | 3.90 × 10 ⁻³ | 861
1,171 | 27.7 × 10 ⁶ | | MW-16 | 1
2
3
4 | 114
116
115
112 | 111
521
514
506 | 14.8
15.1
15.0
14.5 | 41.0
41.8
41.5
40.2 | -141
89
84
79 | 1,741
2,284
2,275
2,265 | 3.89
2.30
2.31
2.26 | 875
1,148
1,143
1,138 | 26.1
13.4
13.5
13.3 | | MW-17 | 1 2 | 114
113 | 530
524 | 14.8 | 41.2
40.7 | 92
89 | 2,292
2,284 | 2.26 | 1,152
1,148 | 13.2
13.9 | | MW-18 | 1 | 114
114 | 523
556 | 14.9
14.8 | 41.0
41.0 | 88
107 | 2,285
2,322 | 2.26
2.19 | 1,148
1,167 | 13.3
12.6 | | | | 1 | _ | | | | | | | | | | | | | | | MPER | | | | | | | | | | | | | | - | |-----------|------|---|--|--|--|--|--|--|---|--|---|---|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|---|---|--| | Model | Test | t, | H- | _ | ١, | , | 5 | 1, | , | 8 | 9 | 10 | 11 | 12 | 13 | 114 | F, £ | 16 | ī | 18 | ī | 20 | 21 | 22 | 23 | Sli | 25 | 26 | 27 | 28 | 29 | 30 | | WW-1+-(5) | 1 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 1 | 71
75
80
80
83
83
83
82
81
81
81
79 | | 80
81
83
81
80
79
79
77
76
77
75 | 79
83
88
84
84
83
82
81
82
81
80
80 | 83
86
87
83
84
83
83
82
82
81
80
80
79 | 79
79 | 77
77
78
82
82
83
83
84
82
82
82
82
82
82 | 81 | 81
86
88
81
86
85
81
83
82
81
82
80
80 | 79
83
85 | 79
82
82
85
84
83
83
82
80
81
79
79 | 78
81
82
83
83
83
82
81
80 | 78
81
80
83
83
83
84
82
82
81
80
80 | 79 78 79 81 80 81 82 81 82 80 81 81 | 79
78
80
81
81
79
78
77
76
75
71
71
72 | 83
84
86
87
86
86
86
81
83
83
83
83
83
83
83
83
83 | 84
86
90
86
85
83
81
81
79
50
79
78
77 | 82
81
88
87
81
83
82
80
81
79
79
78
78
77 | 833
855
877
878
8685
8382
8280
8180
8081
8181 | 81
81
82
79
77
76
71
71
73
72
71 | 82
82
81
82
81
79
78
77
75
70
70
69 | 77
78
79
80
83
81
82
81
81
81
79
80
79
79 | 82
79
79
79
78
78
78
78
80
81
81
81 | 81
86
85
86
85
83
83
83
83
87
79
79 | 82
85
88
87
81
83
81
80
78
78
78
78 | 88
91
93
91
88
88
87
81
85
82 | 20 | 81
88
82
82
79
81
83
80
80
80
80
80
80
80
80 | 30 | | | 2 | 0
1
2
3
4
5
6
7 | 80
104
178
256
317
364
396 | 93
11:1
205
263
311:
355 | | 86
127
188
249
293
327
351
371 | | 82
129
193
25L
300
337
366
390 | 135
190
239
282
320 | 78
82
98
133
160
226
271
308 | 81
127
191
250
293
331
361
385 | 126
193
254
301
336
366 | 83
118
174
230
271
307
336
362 | 1134 | 226 | | 81
79
75
113 | 80
81
90
109
138
169
198
227 | 82
124
182
237
282
316
345
369 | 123
193
250
294
329
358 | 187
241:
287
322
350 | | 80
112
165
211
245
271
292
308 | 75
108
156
200
235
260
283
300 | | | | 8L
116
183
226
261
289
313
335 | 85
118
191
210
280
311
338
362 | | | 79
94
141
178
210
239
265
288 | | | 1 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 83
85
90
92
92
92
92
91
90
90
89
88 | 82
84
87
89
90
91
91
90
90
89
89
88
88 | 95 | 88 | 87
89
87
81
81
83
82
81
81
80 | | 90
95
97
95
94
94
92
92
92
90
90 | 87
93
95
91
92
91
91
90
90
91
92 | | | 82
83
84
86
87
88
87
88
87
86
86
86
86 | 82
81,
83
85
85
85
84,
84,
82
81
81,
81 | 88
92
95
94
92
91
90
86
88
86
86
86
86
86
87 | 85
84
84
84 | 87
89
91
88
86
85
83
82
80
80
80
79
78 | 84
87
87
86
84
83
82
81
80
79
78
75
75 | 85
85
86
87
88
88
87
86
81
83
82
81
81 | 90
89
89
88
88
88 | 89
95
96
92
89
86
86
85
81
83
83
83
83
83 | 86
87
89
90
91
91
91
90
89
88
89
90
88 | 83
81
85
87
88
87
87
87
86
86
85
86
85
85 |
83
79
78
79
79
79
80
79
78
78
79
79
79 | 88
91
93
93
92
91
89
88
87
87
87
87
87
87 | 87
89
92
91
90
89
88
87
85
86
86
86
86
86
86
86
86 | | 87
90
91
93
91
89
89
89
89
89
88 | 85
86
88
89
89
89
86
86
86
86
86
86
86 | 85
86
89
90
89
89
88
88
88
87
87
87 | 85
86
90
89
89
88
88
87
86
88
88
87
86 | 85
88
92
91
90
88
88
87
87
88
88
87
87 | | M₩-16 | 2 | 0
1
2
3
5
6
7
8
9
10
11
12
13
14
15
16 | 417
427
435
440 | 91
128
180
229
273
309
338
363
382
397
110 | 245
293
331
357
380
396
409
419 | և19
և25
և28 | 327 | 85
108
153
202
218
280
317
313
363
379
392
509
510
617
621 | 86
127
192
253
298
333
360
380
396
408
418
424
430
431
427
427 | | 276
300
321
339
350
36h
375 | 79
11:5
191
232
261:
290
316
336
352
361:
376
387
391:
106 | | 295
297 | 279
311
337
358
374
387
398
407
413 | 106
112
119
119 | 83
103
113
183
214
237
256
271
283
298
300
307
311
308
306 | 81
102
113
186
218
263
278
292
301
309
315
320
309
305
305
305 | 80
82
89
107
129
154
178
201
222 | 361
372
381
388
393
396
393 | 324
349
369
384
396
405
414
419
432
403 | 178
202
252
253
273
291
308
321
352
361 | 202
228
252
275
293
311 | | | 8l ₄
11l ₁
171
210
2l ₁ l ₁
272
292
316
33l ₄
350
363
373
382
396
389
386
389 | | 83
109
160
194
220
248
267
288
307
324
337
351
363
380
383
381
381 | 216
240
259
277
293
308 | 176
203
227 | 81
93
135
168
197
224
267
287
305
321
335
350
367
375
377 | 81
105
162
197
225
251
273
294
311
329
343
354
367
384
386
384
382 | | WM-TP | 3 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 392
103
1:12
1:22
1:25 | 375
389
396
405 | 259
295
32h
366
380
392
600 | 343
363
377
389
398
444
447 | 304
309
312
308 | 139
185
220
265
298
323
344
360
373
382
390
398 | 76
111
167
220
263
299
327
352
371
386
397
405
411
415
417
408 | | | 273
296
316
333
316
357
369
376 | 289
313
327
343
354
364
370 | 292
319 | 378
390
397
405
110
115
406 | 220
287
315
336
351
368
390
390
398
103
111
101 | 216
262
273
282
290
296
300
303
301
299 | 206
228
219
261
276
285
293
299
303
298
292
292 | 169
189
210
228
244
258
272
282
289
296 | 278
303
32h
31h
35h
366
37h
382
389
100
398 | 297
318
338
353
365
371
382
388
391
397
390
378 | 191
216
239
260
278
296
311
323
339
319 | | | | 74
103
165
204
238
266
289
309
327
341
355
367
378
390
393
385 | | 72
100
1bh
17b
200
22h
245
26h
291
297
312
325
336
351
351
357 | | 73
78
107
138
166
193
217
238
259
277
293
308
320
336 | 72
85
12h
156
183
209
233
253
273
289
30h
319
332
348
361 | 72
9h
11h
178
205
229
252
270
287
302
316
328
341
358
367
366 | | BRIEN | ŀ | 0
1
2
3
5
6
7
8
9
10
11
12
13
15
15 | 85
109
167
229
277
31:
365
382
396
107
115
1:26
1:26
1:25 | 177
221,
263
206
321,
316
365
380
392
401
409
413 | 12h
157
210
253 | 255 | 192 | | 89
124
175
227
273
308
335
357
377
393
503
512
613
425 | | | 308
327
311.
356 | 231
258
282
303 | 193
211
232
217 | 3L6
362
375
387 | 357
357
371
381 | 257
268
277
283 | 79
107
143
151
210
232
250
265
275
281
297
296
287
298
288
285 | 188
206
221
236 | 322
337
351
361 | 360
371
381
389 | 219
212
263
280 | 215
237
258
275 | | | 86
113
169
209
241
267
291
310
326
311
353
364
377
377
377 | | 186
212
234
255
274
294
307
319
331 | 143
168
192
211
233
251
268
281
297 | 82
90
117
118
171
202
223
211
261
277
293
307
320
336
313 | 13h
165
192
215
236
255
273
289
303 | 161
192
213
241
260
278
294
308
321 | ^aBlanks in data denote that the instrument was not used. TABLE III. - MODEL TEMPERATURE HISTORIES - Concluded | | | T. | | | | | | | _ | | _ | | | _ | Tv | шрез | atu | e, c | F, s | t t | erm | ocou | ole | | | _ | | | | _ | | | _ | | | | |--------|------|--|--|---|---|--|---|--|---|---|--|--|--|---|--|--|--|--|---|--|---|--|---|--|--|--|---|---|--|---|--|--|---|--|---|---| | Model. | Test | sec | 1 | 2 | 3 | 11 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 51 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 32 | 33 | 34 | 35 | | MW-17 | 1 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 70
116
195
263
309
314
371
390
404
417
426
434
437
439
439 | 105
160
207
241
266
28h
298
310
32h
32h
328
331
330
32h | 68
72
88
119
156
190
219
245
261
281
294
304
311
318
321
319 | | 285
295
305
313
317
320
321
315 | 75
97
124
156
185
210
231
247
260
271
281
289 | 219
245
265
278
298
306
311
314
315
310 | 296
301
301
299 | 298
305
310
313 |
68
82
107
139
172
203
232
259
281
300
316
330 | 60
67
78
103
13h
167
200
231
257
283
305
32h
335 | 69
70
78
93
116
139
162
184
203
220
235
248
257
267
277 | 66
104
173
228
269
302
329
352
370
384
395
406
412
417
413 | 68
103
171
224
265
297
324
348
365
380
391
402
409
415
413 | 68
101
173
223
259
291
316
336
353
367
379
389
397
405 | 69
101
170
217
25h
309
331
346
361
375
386
392
105
h03 | 72
106
167
211
218
276
301
323
311
358
369
380
388
393
400
399 | 68
106
171
220
257
287
311
348
361
374
389
395
401
402 | 71
105
166
218
259
291
318
339
356
371
38h
393
400
404
409
408 | 72
104
158
208
246
277
302
323
340
356
367
377
385
390
398 | | 69
93
132
171
198
222
240
255
267
278
286
292
298
296
293
291 | 68
96
137
177
208
232
251
267
279
287
296
306
303
300
301 | 203
227 | 65
77
101
131
162
193
222
248
270
292 | 182
200 | 265
276
283 | 145
181
214
281
293
313
329
344
355
369
384 | | 69
73
89
117
146
176
205
230
254
274
291
308
324
360
367 | 167
194
217
236
251
263
274
281
289
289
281
281 | 398
397
394 | 206
239
265
288
309
325
312
355
367
379
390
392
387 | 70
92
127
159
184
204
221
234
255
262
267
260
257
263
263 | | | 2 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 87
136
209
272
315
318
374
393
407
419
435
435
430
431 | 118
169
212
245
267
284
296
307
317
323
327
330 | 87
102
131
163
193
220
242
260
276
289
300
308
315 | | 83
114
160
200
250
251
272
285
296
304
311
316
319
319
316
315 | 93
112
138
163
188
212
231
248
261
273
282 | 156
195
224
265
265 | 11.5
178
205
227
21.6
261
273
281
291
297
302 | 104
135
165
192
217
256
271
284
295
303
309
314 | 96
119
150
182
211
239
264
286
304
321
334
346
356 | | 85
86
93
109
130
171
191
208
224
237
248
259
268
271 | 80
118 | 79
117
178
229
268
300
326
347
365
379
391
402
408
418
413 | 85
118
179
226
262
291
316
336
353
367
379
388
395
404
406 | 87
122 | 86
120
173
215
219
278
302
322
340
355
367
377
385
393 | 86
123
183
227
261
290
314
3349
363
374
382
390
398
400 | 88
122
179
226
263
294
319
356
371
382
391
398
403
407 | 89
122
171
215
251
280
304
323
342
355
368
377
384
390
397 | 86
120
173
219
255
284
307
343
355
366
374
379
386
385 | 86
109
114
178
205
227
244
259
272
281
290
295
300
295
295 | 82
108
147
183
212
235
254
269
291
298
304
307
300
302 | 80
85
92
106
122
164
189
211
232
252
271
289
307
327
322 | 83
9h
117
1hh
202
230
25h
277
296
31h
330
34h
359 | 84
89
104
123
145
166
187
208
224
241
253
265
273
276 | 205
227
243
257
270
278
286
292
295
292
290 | 100
118 | 108
148
185
218
218
274
297
317
334
349
362
376
384
391 | | 86
109
146
176
201
222
239
253
266
275
284
289
285
285
286
286 | | 176
214
246 | 86
107
139
168
190
208
223
234
246
255
262
265
263
264 | | MW-18 | 1 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 83
126
201
266
313
348
376
397
412
425
436
444
449 | 77
111
164
210
243
268
286
300
310
319
325
333
335
335
332
329 | | 78
81
95
125
163
202
239
272
303
328
350
368
384
397
405 | | | 79
117
189
248
290
326
352
373
391
405
416
426
431
435 | 418
418
422 | 363
382
395
406
415
421 | | 80
110
157
201
234
261
281
297
311
329
336
339
337
335
333 | 105
159
205
244
278
308 | 77
84
88
98
118
170
198
224
219
273
297
312
324
360 | 82
95
119
153
187
219 | 91
120
155
194
230 | 77
78
87
103
128
153
179
202
22h
2h2
257
271
282
291
293
300 | 80
114
182
234
275
304
329
350
367
383
395
404
412
417
414 | | | 180
230
269
300
326
317 | 302
328
348
364 | 79
84
90
103
122
143
167
192
217
240
260
281
299
314
335
333 | 226
264
293
317
336 | 260
292
317
338 | 213
238
257
271 | 211
237
256
273 | 78
90
108
139
212
250
284
293
319
368
375
381
396
398 | 104
125
150
173
196 | 228
266
300
326
348
367
382
395
406
415
426 | 83
102
137
184
224
256
284
310
329
345
357
368
389
389
396 | 82
86
103
129
160
191
220
247
270
290
310
328
342
354
371 | 82
113
175
212
245
272
297 | 83
116
182
222
255
282
305
345
360
372
384
396
409
402 | 79
105
146
176
199
236
250
261
271
279
288
289
293
290 | | | 2 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | 78
113
174
226
261
286
307
324
334
352
357
361
358
357 | | 161
195
228
258
284
307
329
352 | 77
92
126
168
210
250
283
311
339
360
379
393
409
416 | | | 186
246
291
328 | 254
251
251
251
251
251
251
251
251
251
251 | 77
119
182
241
285
321 | 79
111
164
213
251
279
302
321
334
347
356
368
370
363 | 74
98
155
204
248
318
346
371
390
406
420
430
447 | | 74
77
92
118
154
192
229
262
291
320
341
377
392
405
410 | | 76
77
8l ₁
102
126
153
180
206
230
251
267
28l ₁
296 | 73
112
188
245
288
320
347
367
405
415
424
433
443
443 | | | | 76
116
185
286
320
347
369
386
402
413
421
431
434 | | 76
117
18h
2h2
286
321
350
372
393
406
h18
428
h3h
h37
h41 | 78
113
172
229
270
305
333
356
375
389
403
411
414
419
425 | 78
107 | 74
103
147
192
225
275
275
294
307
320
336
334
334
333 | | 77
79
86
98
117
141
165
190
214
234
253
271
285
309
314 | | 72
89
109
140
175
211
245
275
302
326
348
365
365
400
416
422 | 96
124
158
190
250
275
298
319
337
354
370 | 247
279
304
327
345
366
378
402
417
420 | 182
226
262
293
318
341
359
375
390
401
411 | 307
311
312
315 | ⁸Blanks in data denote that the instrument was not used. TABLE TV - MODEL STRAIN HISTORIES | | _ | | _ | | | | | | | | | | ISTORI | strai: | | loss+ | iona | | | | | |----------|------|---|---|--|--|---|---|---|--|---|--|---|--|---|---|--
--|---|--|--|--| | Model | Test | t,
sec | ᄂ | 2 | 3 | 4 | 5 | Strai: | 7 | eroi: | 9 | 10 | u
u | 12 | 1 gage | 1l; | 15 | 16 | 17 | 18 | 19 | | WW-4-(5) | 1 | 0
1
2
3
4
5
6
7
8
9
10
11
12
11
12
13
14
15 | | 4
-91
-95
- 8
- 44
65
- 46
-21
-21
-237
-17
-12
17 | | | | -7
-32
-10
-7
0
5
2
0
0
7
17
2
8
27 | 2
62
-99
-45
-54
-73
-77
-86
-101
-170
-198
144
-54
-21 | -8
-57
63
49
61
73
61
71
69
131
113
26 | 36
-100
-34
-24
0
2
17
19 | 255
-255
-255
-255
-255
-255
-255
-255 | 8 19 19 19 19 19 19 19 19 19 19 19 19 19 | 15
-36
34
-23
-61
-80
-79
-77
-73
-63
-138
-71
-33
-65 | -14
-58
-93
-25
-21
-18
-36
-31
-49
-81
-73
-73
-73 | 2
-51
-103
-125
-133 | | | 137703374848484844 | | | | | . 2 | 0
1
2
3
4
5
6
7 | | 14
388
297
212
115
87
814
72 | 17
360
930
1285
1393
1374
1283
1140 | | 17
103
238
215
115
131
131
189 | | | | -22
-160
-162
-701
-908
1058
1069
-994 | 12
222
330
290
199
143
75 | -55
-6
-29
-129
-230
-273
-298 | | | | | | | | | | | ı | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 13
105
202
192
170
164
113
119
65
26
20
20
40 | 0
196224 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 175
159
159
168
170
155
132
132
135
135
135
135
135
135
135
135
135
135 | 4356574666639337731997797 | | 23975 81 43 82 11 9 6 17 14 15 9 88 89
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 140
149
149
15
11
15
11
15
17
10
10 | -2
68
77
12h
122
11h
105
99
110
110
143
-16
119
165 | | | -6
0 -8
27
-8
14
27
23
33
23
23
24
270
-2 | 249
-77
-882
-97
-82
-60
-10
-110
339
15
9 | 8
17
-9
-11
-19
-24
-23
-24
-13
23
86
-11 | 264
- 485
- | 49
40
-125
-63
-87
-161
-116
-179
-88
-102
-56
15
-92
10
2 | 0
7
-154
-145
-137
-225
-237
-139
-170
-188
-132
-91
-91 | | | | MW-16 | 2 | 0
1
2
3
4
5
6
7
8
9
0
11
12
13
14
15
16
16
16
16
16
16
16
16
16
16
16
16
16 | | | | 2
13
130
70
50
57
48
29
32
48
57
95
78
63
-30
99
107 | | 22
327
760
1026
1085
1039
9144
805
651
487
320
147
-15
-91
-121
-217
-279 | | 19
68
236
243
239
177
287
363
365
298
239
226
625 | 63
200
137
33
-90
-153
-165
-165
-133
-76
-76
-76
-222
13 | 90 | | | | | 2
32
107
151
155
135
116
24
-66
-177
-238
-161
-139
-226
-254 | | 0 22 7 7 6 22 63 55 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 14
210
14
-2
-12
-13
0
2
54
110
158
325 | | | | 3 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | | | -9
4h
87
17
59
87
118
117
120
130
131
125
122
70
132
104 | | 21
300
709
91h
968
932
8h5
727
61h
177
3h8
216
102
-18
-131 | | | -4
96
101
62
-16
-56
-56
-47
-51
-51
-51
-63
-83 | | | | | | 2
3l ₁
153
194
195
189
168
140
116
80
76
83
172
236
166 | 5
2h
102
138
1h5
133
112
73
22
-10
-37
-87
43
-31
-61 | | | 9
62
83
64
26
0
-40
-26
-23
-32
-36
17
11
162
75 | | | 14 | 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | | | 83
31
17
36
61
90
83
90
92
85
80
58
134
63 | - | 9
261
683
895
948
902
822
704
591
477
371
259
161
-159
70 | | | -5
113
57
19
-14
-26
-17
-10
17
36
15
38
84
-278
-46 | | | | | · | 146
1141
1111
188
207
188
172
161
151
163
176
196
337
62
289 | 752
116
125
119
125
119
131
131
131
131
131
131
131
131
131 | | | | ^aDashes in data denote that the instrument failed or was deemed unreliable; blanks denote that the instrument was not used; and negative signs indicate compression. TABLE IV. - MODEL STRAIN HISTORIES - Concluded | | | t, | | | | | | | Stre | ain, r | nicroi | nches | per in | ch, at | strain | n-gage | locat | ione | | | | | | |-------|------|---|--|---|--|--|--|--|---|---|--|---|--|---
---|--|-------|--|---|--|---|---|--| | Model | Test | вес | 1 | 2 | 3 | ь | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | MW-17 | 1 | 0
1
2
3
4
5
6
7
8
9
0
11
12
13
14
15 | 254
254
254
254
254
254
254
254
254
254 | -13
-228
-287
-162
-113
-129
-529
-291
-150
-86
-361
-162
-106
8 | 0
165
251
233
196
131
151
645 | 15
191
543
805
897
892
847
779
711
622
536
460
390
306
197
99 | 22
-155
225
208
185
159
138
112
123
152
161
238 | 0
129
62
15
-23
-14
-108
-171
-198
-181
-108
-194
185
71 | -260
-304
-314
-273
-216 | -29
761
511
-444
-202
-364
-533
-613
-504
-383
-179
-162
2714
312
510 | -6
-52
-119
-208
-233
-260
-245
-237
-165
-10
31
148
66
231
299
389 | -18
-147
-251
-102
-193
-552
-561
-566
-533
-524
-188
-181
-373
-282
-260 | 14
-156
-141
-170
-168
-202
-226
-274
-278
-285
-280
-313
-300
-256
-263 | 17
114
267
275
264
239
243
243
213
206
174
116
80
39
-19
-146 | | | | | | 0
125
91
77
62
36
45
114
-12
0
18
161
164
351
378
423 | 15
-120
210
220
212
170
168
152
162
224
228
266
264
741
322 | | 11
-11
-78
-85
-91
-33
6
26
16
74
126
150
179
205
277
244 | | | 2 | 0
1
2
3
4
5
6
7
6
9
0
1
1
2
3
1
2
1
2
1
1
2
1
1
2
1
1
2
1
2
1 | 2
385
331
303
281
238
297
270
218
202
217
231
201
358
329 | -15
-240
-209
-249
-211
-200
-238
-198
-225
-267
-273
-253
-320
-320
-362
185
-80 | 186
186
186
227
-335
-146
-235
-146
-146
-146
-146
-146
-146
-146
-146 | 906
910
887
833
772
709
653
588
487
388 | | 29
129
55
26
-38
-56
-59
-136
-137
-137
-137
-137
-137
-137 | | -16
80
94
68
16
-17
-14
-30
-31
35
26
30
10
278
71
76 | 24
95
340 | -3h
-153
-333
-15h
-5h8
-6h2
-796
-748
-790
-817
-851
-851
-893
-982
-881
-787 | -h
-7h
-56
-101
-125
-166
-162
-187
-212
-227
-207
-182
-94
512
-56 | -12
252
323
305
305
293
286
277
235
236
222
201
219
319
-362
139 | 5
209
475
666
731
738
677
615
559
439
385
316
236 | | | | -4
22
93
122
135
137
104
75
40
36
57
22 | -7
74
55
44
52
30
22
-8
-28
-20
49
166
75 | | | -23 -110 -166 -110 -94 -135 -107 -86 -24 -28 -28 -21 58 12 383 77 | | | l | 0
12
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18
375-
256
279
39
-107
-122
-172
-193
-203
-213
-286
-315
-164
-274 | -li
-93
-312
-276
-316
-li
-52
-li
-52
-li
2li
33
109
171
9li
381 | | -21
26
-122
-166
-155
-122
-78
-66
-59
-80
-59
-29
-29 | | 20
285
616
861
909
892
834
758
672
578
502
416
329
193
127
-180 | -86
318
350
343
306
197
234
265
238
227
193
356
645 | | -7
-40
-99
-203
-238
-261
-186
-144
-66
-72
-20
-7
18
59
-88
96 | -37
-126
-264
-111
-158
-519
-556
-590
-617
-612
-576
-563
-620
-780
-399
-536 | 9
248
56
12
-21
-39
-55
-62
-51
-60
-76
-95
-102
33
-210
-86 | -7
-108
240
248
201
153
122
110
94
78
535
-16
-122
62
-154 | | -13
-225
-497
-524
-381
-265
-123
-30
18
55
120
161
195
225 | | 8
5
83
1h0
171
193
208
211
217
222
201
193
189
25h
506 | -11:
69
20
18:
26:
-12:
-16:
-57:
-75:
18:
21:
21:
21:
21: | 22
93
101
103
99
78
62
99
120
132
236
248
363 | -2
7
-143
-181
-170
-179
-181
-98
-25
84
125
157 | | -7
101
-61
-h0
37
7
9h
6h
117
120
146
167
173
195
2
186 | | MW-18 | ۷ | 012345678901123115 | | -21
-335
-291
-217
-101
72
261
316
251
293
194
512
173 | | -34
-49
-110
-131
-83
-39
-8
19
141
58
53
36
15
134
88 | | 18
345
714
965
1040
1027
953
833
732
634
551
461
253
163 | | | | -53
-205
-118
-555
-653
-709
-735
-768
-768
-775
-789
-671
-858
-862
-725
-822 | 5
175
90
21
-28
-36
-40
-13
-12
-33
-24
-5
42
54
48 | -19 114 324 324 312 282 249 243 220 210 194 17 165 57 66 55 | 8
373
737
858
1089
1081
1008
901
789
682
572
461
374
307 | | | 3 2
63 114
117 177
177 199 220 255 285 309 324 348 609 669 | | | | -21
-72
-107
-181
-256
-325
-374
-429
-467
-479
-472
-493
-395
-4035 | -22
-36
-143
-534
-109
-72
-21
-3
14
60
78
111
87
143
145
136 | apashes in data denote that the instrument failed or was deemed unreliable; blanks denote that the instrument was not used; and negative signs indicate compression. # TABLE V. - SUMMARY OF MODEL BEHAVIOR # (a) Description of model-vibration tests | Model | Test | Model vibration | |----------|------|---| | MW-4-(2) | 1 | 65-cps bending and torsion after starting disturbances;
130-cps random vibration at 8.7 seconds; 80-cps torsion at
10.7 seconds; 173-cps torsion after tip-stabilizer reentry | | MW-4-(2) | 2 | 72-cps vibration after starting disturbances; 238-cps flutter until destruction between 7.32 seconds and 7.68 seconds | | | 1 | 60- to 78-cps random vibrations throughout test | | MW-16 | 2 | 275- to 286-cps random vibrations throughout test; 60-cps vibration before shutdown disturbances | | | 3 | 258- to 266-cps random vibrations throughout test | | | 14 | 60-cps vibration at 9 seconds | | MW-17 | 1 | 130- to 140-cps vibrations throughout test; 140-cps torsion after tip-stabilizer reentry | | · | 2 | 140-cps torsion after tip-stabilizer reentry | | 0 | 1 | 145-cps bending and torsion after tip-stabilizer reentry | | MW-18 | 2 | 70-cps vibration from 5 seconds until shutdown; 124- and 70-cps torsion after tip-stabilizer reentry | # (b) Approximate times for particular events | Approximate time, sec | Stagnation pressure, psia | Model condition | |-----------------------|---------------------------|---------------------------------| | 0 to 1.2 | <50 | Violent model buffeting | | 1.7 to 11.5 | >100 | Test conditions exist | | 1.7 to 11.0 | | Tip stabilizer out of airstream | | 13.4 to end | <50 | Violent model buffeting | Figure 1.- Construction of multiweb wing models. All dimensions are in inches. (b) Model MW-16. Figure 1.- Continued. (c) Model MW-17. Figure 1.- Continued. (d) Model MW-18. Figure 1.- Concluded. L-80729.1 Figure 2.- Photograph showing installed instrumentation in interior of model MW-16 prior to final assembly. (a) Model MW-4-(2). Figure 3.- Location of instrumentation of multiweb wing models. Where two wire strain gages are listed, the second is on the far skin. (b) Model MW-16. Figure 3.- Continued. (c) Model MW-17. The symbol (a) denotes a dimension of 3/8 inch between thermocouple and wire-strain-gage center line. Figure 3.- Continued. Thermocouple -∰ Wire strain gage (d) Model MW-18. The symbol (a) denotes a dimension of 3/8 inch between thermocouple and wire-strain-gage center line. Figure 3.- Concluded. Figure 4.- Model in place at nozzle exit prior to test. L-81922 Figure 5.- Typical variation of stagnation pressure with time. Model MW-18; test 1. Figure 6.- Typical variation of stagnation temperature with time. Elevated-temperature test data are from test 1 of model MW-18; low-temperature test data are from test 1 of MW-4-(2). Figure 7.- Flutter and failure sequence of model MW-4-(2) at $\alpha=0^{\circ}$. Flutter frequency, 240 cps; air flows from left to right. Figure 8.- Typical model temperature histories during a high-stagnation-temperature test. Model MW-18; test 1. #### Symbol Model and test - O MW-4-(2), test no. 2 - ☐ MW-16, test no. 2 - ♦ MW-16, test no. 3 - △ MW-16, test no. 4 - △
MW-17, test no.1 - △ MW-17, test no.2 - □ MW-18, test no. I - Q MW-18, test no.2 # (a) Spanwise temperature distribution along model midchord. Figure 9.- Skin-temperature distribution at 6 seconds test time for elevated-temperature tests. For comparison purposes, the temperatures have been normalized on the basis of the test conditions experienced by model MW-18 during test 1. (b) Chordwise temperature distribution at approximately 17.25 inches from the root. (c) Chordwise temperature distribution at approximately the midspan. (d) Chordwise temperature distribution at approximately 2 inches from the root. Figure 9.- Concluded. (a) Difference in temperature between web 3 and the skin at the midchord. (b) Difference in temperature between web 4 and the skin at the center chord. ☐ MW-16, test no.2 ☐ MW-17, test no.2 Figure 10.- Difference between skin temperatures and web temperatures at 6 seconds test time. Figure 11.- Idealized cross section used to calculate thermal stresses from the experimental temperature distribution. The cross section is geometrically doubly symmetric. Figure 12.- Calculated stresses about the midchord at a section 3 inches from the tip of model MW-18 during test 1. NACA - Langley Field, Va. A motion-picture film supplement, carrying the same classification as the report, is available on loan. Requests will be filled in the order received. You will be notified of the approximate date scheduled. The film (16 mm., 8 min., B&W, silent) shows the entire first test of model MW-18 and both tests of model MW-4-(2) with pictures taken at 128 frames per second. Additional sequences are taken from cameras operating at about 700 frames per second of the tests of model MW-4-(2) to illustrate the small-amplitude flutter typical of many tests and to show the flutter failure of test 2. Timing lights provide 1/10-second timing. Requests for the film should be addressed to the ! Division of Research Information National Advisory Committee for Aeronautics 1512 H Street, N. W. Washington 25, D. C. NOTE: It will expedite the handling of requests for this classified film if application for the loan is made by the individual to whom this copy of the report was issued. In line with established policy, classified material is sent only to previously designated individuals. Your cooperation in this regard will be appreciated. | | CUT | |--------------|---| | | Date | | Please send, | on loan, copy of film supplement to RM L57L13 | | Name of orga | nization | | Street numbe | r | | City and Sta | te | | Attention* | Mr. | | 1 | Title | | 1 | *To whom copy No. of the RM was issue | Place stamp here Chief, Division of Research Information National Advisory Committee for Aeronautics 1512 H Street, N. W. Washington 25, D. C. | DO NOT REMOVE SLIP FROM MATERIA | |---------------------------------| |---------------------------------| Delete your name from this slip when returning material to the library. | NAME | DATE | MS | |---------|------|------| | 2 Could | 19tt | -431 | | | 7 | NASA Langley (Rev. Dec. 1991) RIAD N-75